# (19) **日本国特許庁(JP)**

# (12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

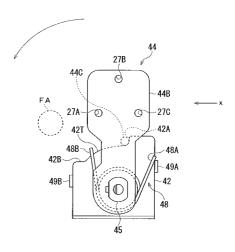
特開2013-22158 (P2013-22158A)

(43) 公開日 平成25年2月4日(2013.2.4)

| (51) Int.Cl. |       |           | Fl      |       |   | テーマコード (参考) |
|--------------|-------|-----------|---------|-------|---|-------------|
| A61B         | 1/06  | (2006.01) | A 6 1 B | 1/06  | В | 2H040       |
| G02B         | 23/26 | (2006.01) | GO2B    | 23/26 | В | 4C161       |

# 審査請求 未請求 請求項の数 11 OL (全 11 頁)

| (21) 出願番号 | 特願2011-158236 (P2011-158236) | (71) 出願人 |                                 |  |  |
|-----------|------------------------------|----------|---------------------------------|--|--|
| (22) 出願日  | 平成23年7月19日 (2011.7.19)       |          | HOYA株式会社                        |  |  |
|           |                              |          | 東京都新宿区中落合2丁目7番5号<br>. 100090169 |  |  |
|           |                              | (74)代理人  |                                 |  |  |
|           |                              |          | 弁理士 松浦 孝                        |  |  |
|           |                              | (74) 代理人 | 100124497                       |  |  |
|           |                              |          | 弁理士 小倉 洋樹                       |  |  |
|           |                              | (74)代理人  | 100129746                       |  |  |
|           |                              |          | 弁理士 虎山 滋郎                       |  |  |
|           |                              | (74) 代理人 | 100147762                       |  |  |
|           |                              |          | 弁理士 藤 拓也                        |  |  |
|           |                              | (72) 発明者 | 佐々木 雅彦                          |  |  |
|           |                              |          | 東京都新宿区中落合2丁目7番5号 HO             |  |  |
|           |                              |          | YA株式会社内                         |  |  |
|           |                              | Fターム (参  | 考) 2H040 CA04 CA07              |  |  |
|           |                              |          | 4C161 GG01 JJ06                 |  |  |


# (54) 【発明の名称】補助光源を備えた内視鏡装置

# (57)【要約】

【課題】モータなどのアクチュエータを損傷させることなく、補助光源を光路上へ正確かつ速やかに位置決めすることができる。

【解決手段】内視鏡装置の補助光源駆動機構において、ねじりコイルバネ48をモータシャフト周りに同軸的かつ連動して回転するように配置し、支持部材44の回転途中で、ねじりコイルバネ48の腕部48A,48Bを係合部材49A、49Bで係止させる。これにより、ねじりモーメントがモータシャフトの回転力に抵抗する力となって作用し、モータに対する負荷を増加させる。

# 【選択図】図3



### 【特許請求の範囲】

## 【請求項1】

補助光源と、

前記補助光源を支持し、軸回転可能な支持部材と、

前記支持部材を軸回転させ、前記補助光源を退避位置から光路位置へ移動させるアクチュエータと、

前記支持部材の移動を制御する移動制御機構とを備え、

前記移動制御機構が、

前記支持部材と当たって前記補助光源を光路位置で位置決めするストッパーと、

前記支持部材の軸回転に応じて前記アクチュエータに負荷をかけることによって、前記ストッパーとの接触前に前記支持部材を減速させるバネと

を備えることを特徴とする内視鏡装置。

## 【請求項2】

前記アクチュエータが、前記支持部材と連結するシャフトを回転させるモータを有し、 前記バネが、弾性変形によって前記シャフトの回転する力に抵抗する力を前記シャフト に作用させることを特徴とする請求項1に記載の内視鏡装置。

### 【請求項3】

前記バネが、前記支持部材の移動区間の途中位置から前記アクチュエータに対して負荷をかけることを特徴とする請求項1乃至2のいずれかに記載の内視鏡装置。

### 【請求項4】

前記バネが、前記支持部材が前記ストッパーに当たる直前に前記アクチュエータに負荷をかけることを特徴とする請求項2乃至3のいずれかに記載の内視鏡装置。

### 【請求項5】

前記移動制御機構が、前記支持部材の移動区間の途中位置で前記バネと当たる係合部材を有することを特徴とする請求項1乃至4のいずれかに記載の内視鏡装置。

### 【請求項6】

前記アクチュエータが、前記補助光源を光路位置から退避位置へ移動させるように前記支持部材を軸回転させ、

前記ストッパーが、前記支持部材と当たって前記補助光源を退避位置へ位置決めすることを特徴とする請求項1乃至5のいずれかに記載の内視鏡装置。

### 【請求項7】

前記バネが、光路位置方向、退避位置方向の両方向に対し、前記アクチュエータに対して同じ大きさの負荷をかけることを特徴とする請求項6に記載の内視鏡装置。

### 【請求項8】

前記バネが、前記支持部材が重力によって自由落下する方向へ回転しているとき、その逆方向に移動する場合に比べてより大きな負荷を前記アクチュエータにかけることを特徴とする請求項6に記載の内視鏡装置。

### 【請求項9】

前記弾性部材が、ねじりコイルバネであることを特徴とする請求項1乃至8のいずれかに記載の内視鏡装置。

# 【請求項10】

補助光源と、

前記補助光源を支持し、軸回転可能な支持部材と、

前記支持部材と連結するシャフトを有し、前記補助光源を退避位置から光路位置へ移動させるモータと、

前記支持部材と当たって前記補助光源を光路位置で位置決めするストッパーと、

前記モータのシャフト周りに配置され、シャフトの回転に連動して回転するねじりコイルバネと、

前記支持部材が前記ストッパーに当たる前に、前記ねじりコイルバネの腕部分と当たる 係合部材と 10

20

30

40

を備えたことを特徴とする内視鏡用補助光源駆動機構。

### 【請求項11】

補助光源と、

前記補助光源を支持する支持部材と、

前記支持部材を動かして、前記補助光源を退避位置から光路位置へ移動させるアクチュエータと、

前記支持部材の移動を制御する移動制御機構とを備え、

前記移動制御機構が、

前記支持部材と当たって前記補助光源を光路位置で位置決めするストッパーと、

前記支持部材の移動に応じて前記アクチュエータに負荷をかけることによって、前記ス

トッパーとの接触前に前記支持部材を減速させる弾性部材と

を備えたことを特徴とする内視鏡用補助光源駆動機構。

【発明の詳細な説明】

## 【技術分野】

[00001]

本発明は、体内器官等を観察する内視鏡装置に関し、特に、補助光源を光路上へ移動させる駆動機構に関する。

### 【背景技術】

[0002]

内視鏡装置では、主光源としてのメインランプに加えて、非常時用の補助ランプが備えられている。メインランプが寿命あるいは故障により消灯した場合、補助光源が退避位置から光路位置へ移動して点灯する。これにより、体内への照明が引き続き行われることとなり、ビデオスコープを体内から取り出す等の内視鏡作業を継続することが可能になる。

[00003]

補助光源を退避位置から光路位置へ移動させる機構としては、アーム機構が知られている。そこでは、LEDなどの補助光源を、軸回転可能なアーム先端側に設置している。メインランプが消灯すると、ソレノイドによってアームを軸回転させ、LEDを点灯させる。このとき、アームをストッパーに当てることで、補助光源を光路上に位置決めする(特許文献1参照)。

【先行技術文献】

【特許文献】

[0004]

【特許文献1】特開2004-141408号公報

【発明の概要】

【発明が解決しようとする課題】

[0005]

アームなどの補助光源の支持部材をストッパーに突き当てて位置決めする場合、支持部材が瞬時に停止するため、アクチュエータに大きな負荷、衝撃が加わる。特に、減速機付きモータを使用する場合、減速比に比例して衝撃力も大きくなるため、モータの歯車破損といった部品損傷、しいては補助光源の移動機構そのものの故障を招く恐れがある。

[0006]

したがって、アクチュエータに与える衝撃を抑えながら、補助光源を光路上に精度よく 位置決めすることが必要とされる。

【課題を解決するための手段】

[0007]

本発明の内視鏡装置は、補助光源と、前記補助光源を支持し、軸回転可能な支持部材と、前記支持部材を軸回転させ、前記補助光源を退避位置から光路位置へ移動させるアクチュエータと、前記支持部材の移動を制御する移動制御機構とを備える。例えば、主光源が寿命、故障などで消灯した場合、補助光源が光路位置へ移動する。

[00008]

10

20

30

10

20

30

40

50

アクチュエータとしては、モータなどのシャフトの回転によって動力を伝える原動機、 ソレノイドなど、様々な駆動装置が適用可能である。移動機構としては、アーム機構、ピ ボット機構など様々な機構を採用することができる。

### [0009]

本発明における移動制御機構は、前記支持部材と当たって前記補助光源を光路位置で位置決めするストッパーと、前記支持部材の軸回転に応じて前記アクチュエータに負荷をかけることによって、前記ストッパーとの接触前に前記支持部材を減速させるバネとを備える。

# [0010]

支持部材が軸回転すると、ストッパーに突き当たることによって停止し、その停止位置で補助光源が光路位置で位置決めされる。ストッパーとの接触で支持部材が停止するため、補助光源は正確な光路位置で位置決め可能となる。その一方で、本発明のバネは、支持部材が軸回転するのに合わせて、アクチュエータに負荷をかける。すなわち、支持部材を軸回転させる駆動力に対抗する力が弾性変形によって生じ、支持部材の軸回転中にアクチュエータにかかる負荷が増加する。その結果、回転している支持部材に抵抗する力を直接与えなくてもアクチュエータ支持部材の回転速度が減少し、支持部材がストッパーと突き当たるときの衝撃が抑制される。

## [0011]

バネの構成としては、様々なものが適用可能であり、ねじりコイルバネ、圧縮コイルバネ、引張コイルバネ、板バネなど様々なバネを構成することができる。また、バネの配置位置も、アクチュエータに負荷を支持部材回転中に与えるような配置であればよい。

### [0012]

例えば、モータの場合、前記支持部材とモータのシャフトを連結し、支持部材を軸回転させることができる。このとき、バネは、弾性変形によって前記シャフトの回転する力に抵抗する力を前記シャフトに作用させればよい。バネをシャフト周りに配置することが可能となることによって、支持部材とバネを回転軸方向に並べ、移動制御機構をコンパクトに組み立てることが可能となる。

### [ 0 0 1 3 ]

アクチュエータに対する負荷を与えるタイミングは、支持部材の移動開始と同時でもよく、あるいは、移動区間(退避位置と光路位置との間の区間)の所定の途中位置まで抵抗力を与えず、途中位置を経過してからアクチュエータに負荷を与えることも可能である。

# [0014]

その一方で、内視鏡作業中に主光源が消灯した場合、作業の安全性を考慮すると、速やかに補助光源を光路位置に移動させて点灯させることが望ましい。したがって、バネは、前記支持部材の移動区間の途中位置から前記アクチュエータに対して負荷をかけるのがよい。途中位置まで支持部材の回転速度は減速せず、補助光源がより速く光路位置に到達する。

### [0015]

特に、支持部材がストッパーと突き当たるときの衝撃を緩和させるのは、支持部材がストッパーに当たる直前に減速させることで達成可能であり、移動区間の終了ギリギリまでアクチュエータに負荷を与えないことで、より一層早く補助光源を光路位置に移動させることができる。よって、バネは、前記支持部材が前記ストッパーに当たる直前に前記アクチュエータに負荷をかけるのが望ましい。

## [0016]

支持部材の移動区間の途中位置からアクチュエータに負荷をかける構成としては、バネを支持部材と連動して回転させ、途中位置で前記バネと当たる係合部材を設けるのがよい。バネが係合部材に当たった後の支持部材の回転に伴ってバネに弾性変形が生じ、抵抗力を作用させることができる。

### [0017]

補助光源を光路位置から退避位置へ戻すときも、同じように支持部材を減速させること

が 可 能 で あ る 。 ア ク チ ュ エ ー タ は 、 前 記 補 助 光 源 を 光 路 位 置 か ら 退 避 位 置 へ 移 動 さ せ る よ うに前記支持部材を軸回転させ、前記ストッパーは、前記支持部材と当たって前記補助光 源を退避位置へ位置決めすることが可能である。

## [0018]

このように支持部材を両方向に回転させて位置決めする場合、バネは、前記アクチュエ ータに対して同じ程度の負荷を与えればよい。特に、ねじりコイルバネを使用した場合、 1つのバネで退避位置側、光路位置側に同じ大きさの負荷を容易に与えることができる。

### [0019]

一方、衝突時の衝撃力は、状況によって自由落下で大きくなる。例えば、補助光源のサ イズ、重量が大きく、支持部材の回転がある程度時間を要する場合、支持部材の重量作用 方向、自由落下方向において、ストッパー衝突時の衝撃が非常に強い。そのような場合、 バネが、前記支持部材が重力によって自由落下する方向へ回転しているとき、その逆方向 に移動する場合に比べてより大きな負荷を前記アクチュエータにかけるようにしてもよい

## [0020]

本発明の他の局面における内視鏡用補助光源駆動機構は、補助光源と、前記補助光源を 支持し、軸回転可能な支持部材と、前記支持部材と連結するシャフトを有し、前記補助光 源 を 退 避 位 置 か ら 光 路 位 置 へ 移 動 さ せ る モ ー タ と 、 前 記 支 持 部 材 と 当 た っ て 前 記 補 助 光 源 を光路位置で位置決めするストッパーと、前記モータのシャフト周りに同軸的に配置され 、シャフトの回転に連動して回転するねじりコイルバネと、前記支持部材が前記ストッパ ーに当たる前に、前記ねじりコイルバネの腕部分と当たる係合部材とを備えたことを特徴 とする。

### [0021]

本 発 明 の 他 の 局 面 に お け る 内 視 鏡 用 補 助 光 源 駆 動 装 置 は 、 補 助 光 源 と 、 前 記 補 助 光 源 を 支 持 す る 支 持 部 材 と 、 前 記 支 持 部 材 を 動 か し て 、 前 記 補 助 光 源 を 退 避 位 置 か ら 光 路 位 置 へ 移動させるアクチュエータと、前記支持部材の移動を制御する移動制御機構とを備え、前 記 移 動 制 御 機 構 が 、 前 記 支 持 部 材 と 当 た っ て 前 記 補 助 光 源 を 光 路 位 置 で 位 置 決 め す る ス ト ッパーと、前記支持部材の移動に応じて前記アクチュエータに負荷をかけることによって 、前記ストッパーとの接触前に前記支持部材を減速させる弾性部材とを備えたことを特徴 とする。支持部材は例えば軸回転、平行移動などによって補助光源を移動させる。

### 【発明の効果】

# [0022]

このように本発明によれば、モータなどのアクチュエータを損傷させることなく、補助 光源を光路上へ位置決めすることができる。

# 【図面の簡単な説明】

- [0023]
- 【 図 1 】 本 実 施 形 態 で あ る 内 視 鏡 装 置 の ブ ロ ッ ク 図 で あ る 。
- 【図2】補助ランプ駆動機構の概略的斜視図である。
- 【 図 3 】 モ ー 夕 反 対 側 か ら 見 た 補 助 ラ ン プ 機 構 の 概 略 的 平 面 図 で あ る 。
- 【 図 4 】補助ランプ駆動機構の概略的側面図である。
- 【 図 5 】 ね じ リ コ イ ル バ ネ が 係 合 部 材 に 当 た っ た と き の 補 助 ラ ン プ 駆 動 機 構 の 概 略 的 平 面 図である。

## 【発明を実施するための形態】

# [0024]

以下では、図面を参照して本実施形態である内視鏡について説明する。

### [0025]

図1は、本実施形態である内視鏡装置のブロック図である。

内視鏡装置は、その挿入部分が体内へ挿入されるビデオスコープ10と、プロセッサ2 0 とを備え、ビデオスコープ10 はプロセッサ20 に着脱自在に接続される。プロセッサ 10

20

30

40

2 0 には、モニタ 5 0 が接続されている。 C P U 、 R O M 等を含むシステムコントロール 回路 2 6 は、ランプ電源 3 4 などへ制御信号を出力し、プロセッサ 2 0 全体の動作を制御 する。

## [0027]

プロセッサ 2 0 は、メインランプ 3 2 を備え、メインランプ 3 2 から放射された照明光は、集光レンズ(図示せず)を介してビデオスコープ 1 0 内に設けられたライトガイド 1 2 に入射する。ライトガイド 1 2 に入射した光は、スコープ先端部 1 2 T から射出し、配光 学系(図示せず)を通じて被写体(観察対象)に照射される。

# [0028]

被写体に反射した照明光は、スコープ先端部12Tに設けられた対物レンズ(図示せず)によって結像し、これにより被写体像がCCDなどのイメージセンサ14の受光面に形成される。イメージセンサ14では、1フレーム(フィールド)分の画像信号が所定のフレーム時間間隔で読み出される。イメージセンサ14には、Cy、Ye、G、MgあるいはR、G、Bから成る色要素をモザイク配列させた補色フィルタが配設されている。

### [0029]

読み出された一連の画素信号は、プロセッサ20の画像信号処理回路22へ送られる。画像信号処理回路22では、画素信号に対するデジタル化処理、さらには、ホワイトバランス処理(ゲイン処理)、ガンマ補正処理などの様々な信号処理が施される。これにより、R、G、Bの画像信号が生成される。R、G、B画像信号はモニタ50に出力され、観察画像がモニタ50に表示される。

### [0030]

補助ランプ27は、メインランプ32が寿命、あるいは何らかの原因による故障によって消灯したとき代用されるランプであり、メインランプ32が点灯している間、光路上から外れた退避位置に配置されている。システムコントロール回路26は、メインランプ32のランプ切れを検知する検出部(図示せず)から消灯を示す信号を受けると、モータ28に駆動信号を送るモータ駆動回路29へ制御信号を出力するとともに、ランプ電源34へ補助ランプ点灯の制御信号を出力する。

### [ 0 0 3 1 ]

補助ランプ27は、モータ28を備えた補助ランプ駆動機構40に装着されている。退避位置にある補助ランプ27は、モータ28の駆動によって、メインランプ32とライトガイド12の入射端の間の光路上(光束領域内)の位置(ここでは、光路位置という)へ移動し、位置決めされる。また、システムコントロール回路26は、モータ28へ送られる駆動信号のレベル、すなわち電流量を検出し、補助ランプ27の位置を確認する。

# [ 0 0 3 2 ]

次に、図2~5を用いて、補助ランプ駆動機構40の構成について説明する。

### [0033]

図2は、補助ランプ駆動機構の概略的斜視図である。図3は、モータ反対側から見た補助ランプ機構の概略的平面図である。図4は、補助ランプ駆動機構の概略的側面図である。ここでは、補助ランプからモータ側に向けた光軸に平行な方向をy方向、y方向に垂直で補助ランプ機構の側面から見た方向をx方向と規定する。

# [ 0 0 3 4 ]

補助ランプ駆動機構40は、基台42、支持部材44を備え、基台42にモータ28が装着されている。支持部材44は、互いに対向する2枚のプレート44A、44Bから構成されており、図4に示すように、プレート44Aには集光レンズ46、プレート44Bには補助ランプ27が装着されている。

# [0035]

補助ランプ27は、ここでは白色光を放射するLEDによって構成されており、基板27Dに取り付けられている。基板27Dは、三角形の頂点の位置関係で並ぶ3つのねじ27A、27B、27Cによってプレート44Bに連結固定されている。集光レンズ46は保持部材46Aによってプレート44Aに装着されており、集光レンズ46の光軸Eは、

10

20

30

40

10

20

30

40

50

LEDである補助ランプ27の中心軸、発光方向に一致している。

### [0036]

プレート 4 4 A 、 4 4 B には、モータ 2 8 のシャフト 2 8 A を通す穴が形成されており、シャフト周りに取り付けられるナット 4 1、止め具 4 5 の間にプレート 4 4 A 、 4 4 B が挟まれた状態で接触固定される。ナット 4 1、止め具 4 5 はシャフト 2 8 A に対して摺動しないように装着されている。

### [0037]

プレート 4 4 A 、 4 4 B は、ナット 4 1、止め具 4 5 によって互いに押し付けあって固定されており、モータ 2 8 が回転すると、プレート 4 4 A 、 4 4 B は、一体的にモータ 2 8 のシャフト 2 8 A 回りに軸回転する。モータ 2 8 は、基台 4 2 に面接触するフランジ 2 8 F にネジ 2 8 K 、 2 8 M (図 2 、 4 参照)を通すことによって、基台 4 2 に固定されている。

### [0038]

プレート44Aには、ここではネジで構成される係止部材44Cが取り付けられており、その先端部分がモータ側へ突出するように、係止部材44Cがプレート44Aに螺合固定されている。基台42には、プレート44A、すなわち支持部材44が軸回転するときの係止部材44Cの軌跡に合わせて弧状の切り欠き42Tが形成されており、切り欠き42Tの両縁部42A、42Bに係止部材44Cが接触する。

### [0039]

このように、係止部材 4 4 C と切り欠き両縁部 4 2 A 、 4 2 B がストッパーとして機能し、支持部材 4 4 の回転範囲は切り欠き 4 2 T によって制限されている。図 2 ~ 4 に示す支持部材 4 4 の位置、すなわち係止部材 4 4 C が切り欠き縁部 4 2 A と接触している位置は、光路から外れた退避位置であり、メインランプ 3 2 が点灯している間、支持部材 4 4 は退避位置で保持されている。

### [0040]

基台42には初期位置検出スイッチ(図示せず)が設けられており、支持部材44が退避位置のときにOFF状態となる。システムコントロール回路26は、OFF信号を受けて支持部材44の退避位置状態をプロセッサ起動時に確認する。

## [0041]

メインランプ32が消灯し、補助ランプ27を光路位置へ移動させることが必要になると、補助ランプ27が点灯開始する。それと同時にモータ28が回転し、補助ランプ27が光束FA内に収まる光路位置へ到達するように、支持部材44が軸回転する。支持部材44の係止部材44Cが基台42の切り欠き縁部42Bと突き当たると、補助ランプ27が光路位置で停止する。なお、手動によって補助ランプ27を移動させるように構成してもよい。

## [0042]

本実施形態では、図3、4に示すように、ねじりコイルバネ48がナット41の周囲に装着されている。ねじりコイルバネ48は、そのコイル部分にナット41を挿入することでナット41に取り付けられており、モータシャフト28Aが回転したとき摺動しないようにナット41周囲に巻かれている。したがって、モータ28が駆動されると、支持部材44とともにねじりコイルバネ48も軸回転する。

### [ 0 0 4 3 ]

ねじりコイルバネ48の両腕部48A、48Bは、所定の迎角をもって互いに離れる方向に沿って延びており、バネ軸、すなわちモータシャフト28Aに対してその延び方が対称的である。補助ランプ27が光路位置へ向けて移動している、すなわち支持部材44が切り欠き縁部42Bの位置に到達するまでの途中において、ねじりコイルバネ48の腕部48Bが、基台42に設けられた板状の係合部材49B(図2、3参照)に当たる。

### [0044]

図 5 は、ねじりコイルバネが係合部材に当たったときの補助ランプ駆動機構の概略的平面図である。図 5 を用いて、ねじりコイルバネによる支持部材の移動制御について説明す

る。

## [0045]

ねじりコイルバネ48が係合部材49Bと当たるタイミングは、支持部材44がまだ回転途中のときであり、モータ28の駆動によって光路位置へ向けて回転し続ける。これによって、ねじりコイルバネ48は連動して回転する一方、ねじりコイルバネ48の腕部48Bは係合部材49Bによって係止される。その結果、ねじりコイルバネ48にねじりモーメントが作用し、モータシャフト28Aの回転を妨げる方向、すなわちシャフト回転方向とは逆方向に抵抗力、負荷が与えられる。

### [0046]

モータ28に与える駆動力は、支持部材44の回転中一定であるため、ねじりコイルバネ48によって作用する抵抗力は、モータ28に対する負荷を増加させる。その結果、支持部材44が退避位置に到達する前、すなわち、係止部材44Cが切り欠き縁部42Bに突き当たる前にモータシャフト28Aの減速に伴って支持部材44も減速し、減速した状態で支持部材44の係止部材44Cが切り欠き縁部42Bと衝突する。

### [0047]

なお、支持部材 4 4 の係止部材 4 4 C が切り欠き縁部 4 2 B に突き当たるとき、システムコントロール回路 2 6 は、起動電流(突入電流)が検出されることによって補助ランプ 2 7 の光路位置到達を確認する。

# [0048]

一方、補助ランプ27を光路位置から退避位置に移動させる場合、モータ28の回転によって、支持部材44は逆方向へ軸回転する。今度は、支持部材44の移動途中で、ねじりコイルバネ48の他方の腕部48Aが、基台42に取り付けられた板状係合部材49A(図3、4参照)に接する。

# [ 0 0 4 9 ]

その結果、ねじりモーメントによってモータシャフト 2 8 A の回転を妨げる抵抗力が作用し、支持部材 4 4 の係止部材 4 4 C が切り欠き縁部 4 2 A と突き当たる前、すなわち補助ランプ 2 7 が退避位置へ到達する前に、支持部材 4 4 が減速する。

### [0050]

このように本実施形態によれば、ねじりコイルバネ48をモータシャフト28A周りに同軸的かつ連動して回転するように配置し、支持部材44の回転途中で、ねじりコイルバネ48の腕部48A、48Bを係合部材49A、49Bで係止させる。これにより、ねじりモーメントがモータシャフト28Aの回転力に抵抗する力となって作用し、モータ28に対する負荷を増加させる。

## [0051]

その結果、支持部材44は衝突する前に減速し、係止部材44Cが切り欠き縁部42A、42Bと衝突する時の衝撃が抑えられる。よって、モータ28の減速比を上げてトルクを増した場合にも、モータ28の歯車破損といった損傷を与える恐れがない。また、ゴム、クッションなどを支持部材44に当てるなどして支持部材44に直接力を作用させないため、補助ランプは正確に光路位置で位置決めされる。

### [0052]

一方、支持部材を減速させるバネとしてねじりコイルバネ48を採用することにより、1つのバネで支持部材の回転両方向に対して同じレベルの負荷をモータ28に与えることが可能となる。また、ねじりコイルバネ48の弾性特性により、支持部材44が移動最終位置へ近づくほどその抵抗力も増加するため、支持部材44の衝突直前において減速を強めることができる。

# [0053]

本実施形態では、ねじりコイルバネ48の腕部48A、48Bは、支持部材44が移動区間(切り欠き縁部42A~42Bの区間)のうち半分以上移動した位置で係合部材49A、49Bに当たるように構成されている。しかしながら、係合部材49Aとねじりコイルバネ48の腕部48Aの衝突位置を、支持部材44の移動終了直前に設定してもよい。

10

20

30

40

この衝突位置は、ねじりコイルバネ48の腕部48A、48Bの延びる方向、係合部材49Aの取り付け位置などを調整することで変更可能である。

### [0054]

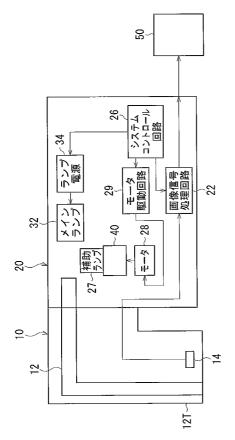
一方、補助ランプ、支持部材の重量、サイズが大きい場合、移動開始から支持部材を減速させてモータに対する衝撃を抑えるため、ねじりコイルバネ48の腕部48A、48Bが退避位置、光路位置で接触するように構成してもよい。

### [0055]

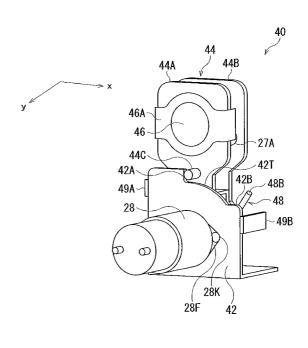
また、補助ランプの重量などを考慮し、支持部材44が自由落下する方向、すなわち、 光路位置へ向けて支持部材44が回転するときの負荷を、その逆方向(退避位置へ向けた 方向)に支持部材44が回転するときに与える負荷よりも大きくすることも可能である。 この場合、係合部材49Bとねじりコイルバネ48の腕部48Bが相対的に早く接触する ように構成すればよい。

### [0056]

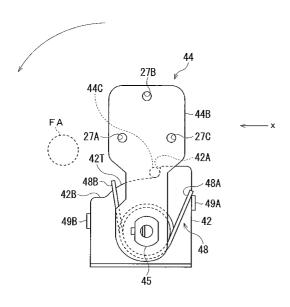
補助ランプを光路位置、退避位置で位置決めする構成は、図2~4に例示したような機構以外の構成を採用することも可能である。特に、ストッパーの機構は実施形態に限定されない。また、他のトーションバネを採用し、あるいは、トーションバネの代わりに板バネを採用することも可能である。例えば、V字状にバネ板を配置し、たわみによって負荷を与えるようにすればよい。さらに、モータの代わりのアクチュエータで支持部材を軸回転させることも可能である。補助ランプについても、LED以外の光源を用いることが可能である。


### 【符号の説明】

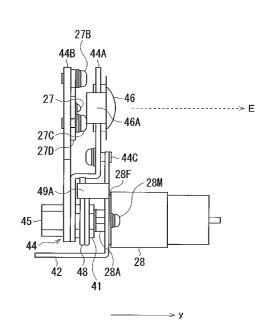
- [0057]
  - 10 ビデオスコープ
  - 20 プロセッサ
  - 2 7 補助ランプ
  - 28 モータ
  - 28A モータシャフト
  - 4 0 補助ランプ駆動機構
  - 41 ナット
  - 4 2 基台
  - 4 2 A 切り欠き縁部(ストッパー)
  - 4 2 B 切り欠き縁部(ストッパー)
  - 42 T 切り欠き
  - 4 4 支持部材
  - 4 4 A 、 4 4 B プレート
  - 4 4 C 係止部材 (ストッパー)
  - 48 ねじりコイルバネ(バネ、弾性部材)
  - 48A、48B 腕部
  - 4 9 A 、 4 9 B 係合部材


10

20


【図1】




【図2】



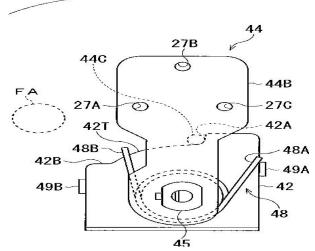

【図3】



【図4】



【図5】






| 专利名称(译)        | 一种具有辅助光源的内窥镜设备                                   |         |            |  |  |
|----------------|--------------------------------------------------|---------|------------|--|--|
| 公开(公告)号        | <u>JP2013022158A</u>                             | 公开(公告)日 | 2013-02-04 |  |  |
| 申请号            | JP2011158236                                     | 申请日     | 2011-07-19 |  |  |
| [标]申请(专利权)人(译) | 保谷股份有限公司                                         |         |            |  |  |
| 申请(专利权)人(译)    | HOYA株式会社                                         |         |            |  |  |
| [标]发明人         | 佐々木雅彦                                            |         |            |  |  |
| 发明人            | 佐々木 雅彦                                           |         |            |  |  |
| IPC分类号         | A61B1/06 G02B23/26                               |         |            |  |  |
| FI分类号          | A61B1/06.B G02B23/26.B A61B1/06.510 A61B1/06.614 |         |            |  |  |
| F-TERM分类号      | 2H040/CA04 2H040/CA07 4C161/GG01 4C161/JJ06      |         |            |  |  |
| 代理人(译)         | 松浦 孝                                             |         |            |  |  |
| 外部链接           | Espacenet                                        |         |            |  |  |
|                |                                                  |         |            |  |  |

# 摘要(译)

要解决的问题:准确,迅速地将辅助光源定位在光路上,而不会损坏电机等执行器。解决方案:在内窥镜装置的辅助光源驱动机构中,扭转螺旋弹簧48布置成与电机轴的周边同轴旋转,并且在支撑构件44旋转期间,扭转螺旋弹簧48的臂部分48A,48B与接合构件49A,49B接合。结果,扭矩作为抵抗电动机轴的旋转力的力,增加了电动机的负荷。 点域

